Juejun Hu
Primary Impact, Materials, Research Type
Contact Info
Assistant
Research
Professor Juejun Hu’s research group focuses on novel materials and devices to exploit interactions of light with matter. Their work covers a wide spectrum of applications, including on-chip sensing and spectroscopy. Capitalizing on a digital Fourier transform technology, Professor Hu and his research group colleagues have created miniaturized and rugged sensors that can be mass produced for industrial process control, medical imaging, and space applications. Another application is optical phase change materials and meta-optics. Optical phase change materials is a class of materials whose optical properties are modified upon undergoing a solid-state phase transition. Using these materials, the group has pioneered a series of cutting-edge reconfigurable optical devices that can be re-programmed to adapt to specific tasks. Other applications are flexible photonics and polymer photonics for biomedical monitoring and high-speed data communications, optics for imaging and sensing for consumer and automotive electronics, and magneto-optical isolation. This work involves chip-scale one-way valves for photons that will become an integral part of next-generation optical communication and navigation systems.
Biography
Professor Hu earned a BS in materials science and engineering at Tsinghua University in 2004 and a PhD in the same discipline at MIT in 2009. Before joining MIT, he was an assistant professor at the University of Delaware from 2010 to 2014. Professor Hu is a fellow of professional societies the American Ceramics Society, Optica, and SPIE.
Key Publications
Reconfigurable all-dielectric metalens with diffraction-limited performance
Proved that you don’t need mechanical movement to change the focus of a lens. Instead, a transparent “metalens” changes the way it interacts with infrared light when it undergoes heat-based phase transformation. To see objects far and near, one would simply heat the material using microheaters.